找学校科技有限公司VDFNQU

初中生几何逻辑思维训练

发布时间:2024-12-09 14:47   已关注:8 人

如何培养初中学生的逻辑思维能力麻烦告诉我

要想让孩子拥有出色的逻辑思维能力,就需要找对方法,主要包括引导其多思考、提升语言理解表达能力、提高其在顺序、时间、空间、大小等方面的思考能力。


具体来说:

一是要多提问,不要给出孩子标准的完整答案,要不断引发其进行新的思考,充分开动脑筋,给出更多假设,引导其进行发散性思维;

二是要多作表达、丰富词汇量,使其逐渐理解不同词语、不同句式在不同情境下的区别;

三是要训练具体的数学能力,包括物体的大小、时间的概念、空间想象、物体的颜色形状等。

训练孩子逻辑思维能力的方法还有很多,家长们可根据孩子的年龄、学习状况分别应用,使孩子能在未来学习中拥有更强动力。

数学逻辑思维训练有哪些方法1.训练学生的数学思维要给材料 。
要根据学生的思维特点、数学本身的性质向学生提供丰富的感性材料,以形成具体生动的表象和概念。随着年级的升高,具体形象的成分逐渐减少,抽象成分不断增加。概念、法则、性质、公式等理性材料日益积累,构成思维的素材,成为构建相应的数学认识模式的知识基础。如学生形成数的概念,构建四则运算系列的模式,掌握几何形体知识的结构大都需要丰富的材料。总的是遵循具体形象──形象抽象—逻辑抽象的规律,并带有某种创造性的萌芽。例如立方体概念的教学中,教师可以提供学生动手操作的素材,让学生动手实践,掌握概念。为使学生认识立方体有12条棱这一概念,教师可分别将11根、13根以及刚好是12根的小棒分别发给学生,要学生动手搭建立方体。学生通过实验发现:搭建一个立方体刚好需要12根小棒,从而让学生掌握立方体是有12条棱组成的这一概念。再如要让学生掌握立方体的12条棱都相等这一概念,教师可在分发12根小棒的小组中有意放一些12根小棒不相等的,让学生在“失败”的经验中认识立方体的12条棱必须相等。这样,学生根据教师提供的教学素材,经历着从展开的、物质的、外部的活动,逐步压缩、省略思维活动的具体环节直至内化为最简单的形式──立方体的概念。
2.训练学生的数学思维要有方向 。
小学生学习数学的思维方向明显特点是单向直进,即顺着一个方向前进,对周围的其他因素“视而不见”。而皮亚杰认为思维水平的区分标志是“守恒”和“可逆性”。这里在所谓“守恒”就是当一个运算发生变化时,仍有某些因素保持不变,这不变的恒量称为守恒。而“可逆性”是指一种运算能用逆运算作补偿。学生要能进行“运算”,这个运算应当是具有可逆性的内化了的动作。因此,教师在教学中既要注重定向集中思维,又要注重多向发散思维。前者是利用已有的信息积累和记忆模式,集中向一个目标进行分析推理,全力找到*的合理的答案。后者是重组眼前或记忆系统中的信息,产生新的信息。解答者可以从不同角度,朝不同方向进行思索,探求多种答案。在对培养学生创造能力越来越强烈的今天,我们必须十分注重学生数学思维的方向性,要利用一切教材中的有利因素,训练学生一题多解、一题多变、一题多用的思维方法。
3.训练学生的数学思维应有系统 。
散乱无序的思维是不能正确反映客观世界的整体性的。“所谓智力的发展不是别的,只是很好组织起来的知识体系”,要使数学知识在考虑数学知识本身的逻辑系统和学生认知规律的相互作用下,能上下、左右、前后各个方向整合成一个纵向不断分化,横向综合贯通,联系密切的知识网络,使数、形、式各部分知识纵横联系,相互促进,广中求深。实践证明,知识联系越紧密,智力背景就愈广阔,迁移能力也就越强,创造性思维就越有可能。一个多方向、多层次的整体结构,对知识的理解、掌握、储存、检索和应用愈有利。但由于小学身心发展的自身规律决定了教师在教学中不可能将知识一下子整体传授给学生,而是在教学时具有一定的等级层次性、阶段性,不同的层次、不同的阶段反映不同的思维水平和不同的思维品质。如小学数学中整数计算的四次循环,分数、小数的两次循环。而三角形知识的两次教学等。教师在教学时应从整体的、系统的观点出发,明确每一层次、每一阶段对学生思维训练的要求,恰到好处地进行训练。
4.训练学生的数学思维应有规律 。
数学思维中的规律包括形式逻辑规律和辩证逻辑规律以及数学本身的特殊规律。它们之间又是相互联系的。存在着形式和内容、具体与抽象、特殊与一般的关系。要使学生学习富有成效,必须揭示知识的内在的联系与规律。如整数、小数、分数、百分数概念之间的联系;四则计算中的五大运算定律,是数系运算根据的通性公式;和、差、倍、分四种基本数量关系是各种应用题的基础等等。规律揭示得愈基本、愈概括,则学生的理解愈容易,愈方便,教学的效果也越好。因此,教师在新知识教学时,要充分利用迁移的功能,让学生用已有的知识和思维方法,去解决新的问题。如我们在教了“5乘以几”的乘法口诀后,可以让学生用这种思考方法去推导其他乘法口诀;学了“加法交换律”的推导后,可以同样的方法学习乘法交换律;学了“三角形的面积公式”推导后,可以同样的方法学习梯形的面积公式推导等等。
总之,只有当数学思维的材料是丰富的、广泛的、可变的;方向是明确的、清晰的、相对稳定的;内容是系统有序的、开放的、综合的;结构是有规律的、辩证的。层次的,才能发展学生思维的整体性,并使思维具有灵活性、深刻性、批判性、目的性、敏捷性甚至创造性,才有利于培养创造型人才。怎样培养初中生的几何思维初中几何?是开始培养。学生的抽象思维能力。首先是要把。几何定理、面积公式等死背下来。这没有什么可讲的。
定理。是世界公认的。定理记得滚瓜烂熟。拿来就用。这才行。
然后要练习两种思维。一种是正向思维。一种是逆向思维。可以找一些正向思维的题。多做一些。再找一些逆向思维的一系列的题。多做一些。
思维方法。是学好几何的关键。也是其乐无穷的。学会了。有一种成就感。初中几何?确实就是需要多练。没有什么捷径。
希望帮助到你,满意就采纳了吧。如何培养中学生的逻辑思维能力一.培养学生数学抽象能力
学生之所以感觉数学难学,归根结底就是学生缺乏数学抽象能力。传统教学中老师直接告诉学生抽象出的结论是什么,而没有让学生参与抽象的过程,导致死记硬背。因此教师要发挥主导地位,引导学生通过现象观察出本质,理解“抽象” ,学会归纳总结。让学生自己形成数学命题,数学思想,老师加以指正和完善,长期以来,学生会有独立自主学习知识的能力。
二.培养学生逻辑推理能力
思考人类历史上的每一次创新与发现,都离不开归纳,类比。在课堂教学中,大量使用类比,介绍人类的重大发明与数学中逻辑推理的关系,充分情景教学,培养学生学习数学的兴趣,这就要求学生大胆的发现和提出命题,他们的有些想法在不久的将来就是新的发明创造,就是定理公理;同时数学推理的精华在于演绎推理,著名的三段论构成了数学的知识体系,公理,定理,推论的证明方式大部分是三段论,演绎推理是现代文明的奠基石,在告知学生三段论的推理方式下,放手让学生去推理,掌握推理的基本形式和规则,正确书写推理的步骤,因果明确,书写具有逻辑顺序, 探索和表述论证的过程; 构建命题体系,同时学以致用,用逻辑推理解决数学和生活中的问题。
三.培养学生数学建模能力
要求学生必须做到发现和提出问题, 利用已知知识建立模型; 求解模型; 检验结果和完善模型。 通过数学建模可以培养学生动手操作能力,对知识的理解程度,达到学以致用,理论与实际相结合。体现数学来源于生活并将应用于生活,数学建模是新课标必须的要求,是理论与实际结合的重要体现,使得学生达到学以致用,在平常教学中,要求学生平时注意搜集模型和资料,注重归类,长期为数学建模准备素材,有备无患。
四.培养学生直观想象能力
学生直观想象能力的培养要通过动手来完成。如我们在立体几何,平面几何教学中,鼓励学生先自己做出模型,这样我们再展现几何图形时,学生便不再陌生,也能找到点,线,面之间的位置关系,成功避开了生硬讲解,达到事半功倍的效果。同时要求学生在生活中注重观察,百闻不如一见,在脑海中形成一些数学直观模型,感受数学之对称美,曲线美。培养学生的想象能力,能有机的结合数与形。因此在教学过程中引导学生用想象的观点看待问题,富余想象,大胆想象,让学生在课堂上放的开,不在以传统的模式约束学生,培养新时代富有想象力的人才。
五.培养学生数学运算能力
数学中的代数部分,总的来讲就是在集合上定义加减乘除及相关运算,形成代数体系和相关结论,这就要求学生理解运算,掌握运算法则,探索运算思路,设计运算程序进行运算。运算是演绎推理的重要组成部分,是人类文明传承的工具,是严谨求实的科学精神的培养手段。让学生充分感知运算的创造性,当今很多程序的实现都是大数据的处理都是在进行运算,取值,自己具有较高的运算能力,才能识别这些程序。这是时代的呼唤,顺应历史发展要求。
六.培养学生数据分析能力
当今世界云计算,大数据处理等等日新月异的成果都与数据是离不开的。如今的竞争也就变成时间的竞争,容量的竞争,优胜劣汰,这就要求学生具有数据获取,数据分析,知识构建的能力。目前我们所在的时代为多元化信息时代,这就要求人类必须有处理信息和数据的能力,才能使得计算机技术更好地服务于人类。平时让学生注重数据的搜集,整理,归类,可以培养学生在这方面的能力,从点滴做起,终将铸成大的成就。经典逻辑思维训练题25题_提高逻辑能力的训练方法本文导读: 逻辑思维 能力通过训练是可以提高的。但只有持之以恒的训练才能真正提高逻辑思维能力。下面是25道训练题,一起头脑风暴吧!1.*的 马拉松 选手每天跑步不超过6公里。因此,如果一名选手每天跑步超过6公里,它就不是一名*马拉松选手。
经典逻辑 思维训练 题25题
以下哪项与上文推理 方法 相同?

(A) 跳远 运动员每天早晨跑步。如果早晨有人跑步,则他不是跳远运动员。

(B)如果每日只睡4小时,对身体不利。研究表明,最有价值的睡眠都发生在入睡后第5小时。

(C)家长和小孩做游戏时,小孩更高兴。因此,家长应该多做游戏。

(D)如果某汽车早晨能起动,则晚上也可能起动。我们的车早晨通常能启动,同样,它晚上通常也能启动。

(E)油漆三小时之内都不干。如果某涂料在三小时内干了,则不是油漆。

世纪有一位英国改革家说,每一个勤劳的农夫,都至少拥有两头牛。那些没有牛的,通常是好吃懒做的人。因此它的改革方式便是*给每一个没有牛的农夫两头牛,这样整个*就没有好吃懒做的人了。

这位改革家明显犯了一个逻辑错误。下列选项哪个与该错误相类似?

(A)天下雨,地上湿。现在天不下雨,所以地也不湿。

(B)这是一本好书,因为它的作者曾获诺贝尔奖。

(C)你是一个犯过罪的人,有什么资格说我不懂哲学?

(D)因为他躺在床上,所以他病了。

(E)你说谎,所以我不相信你的话;因为我不相信你的话,所以你说谎。

3.有一天,某一珠宝店被盗走了一块贵重的钻石。经侦破,查明作案人肯定在甲、乙、丙、丁之中。于是,对这四个重大嫌疑犯进行审讯。审讯所得到的口供如下:

甲:我不是作案的。

乙:丁是罪犯。

丙:乙是盗窃这块钻石的罪犯。

丁:作案的不是我。

经查实:这四个人的口供中只有一个是假的。那么,以下哪项才是正确的破案结果?

(A)甲作案。

(B)乙作案。

(C)丙作案。

(D)丁作案。

(E)甲、乙、丙、丁共同作案。

4.古代一位国王和他的张、王、李、赵、钱五位将军一同出外打猎,各人的箭上都刻有自己的姓氏。打猎中,一只鹿中箭倒下,但不知是何人所射。

张说:“或者是我射中的,或者是李将军射中的。”

王说:“不是钱将军射中的。”

李说:“如果不是赵将军射中的,那么一定是王将军射中的。”

赵说:“既不是我射中的,也不是王将军射中的。”

钱说:“既不是李将军射中的,也不是张将军射中的。”

国王让人把射中鹿的箭拿来,看了看,说:“你们五位将军的猜测,只有两个人的话是真的。”请根据国王的话,判定以下哪项是真的?

(A)张将军射中此鹿。

(B)王将军射中此鹿。

(C)李将军射中此鹿。

(D)赵将军射中此鹿。

(E)钱将军射中此鹿。

5.“赵科长又戒烟了。”

由这句话我们不可能得出的结论是

(A)赵科长过去戒过烟,次数可能不止一次。

(B)赵科长过去戒烟未成功,这次仍可能如此。

(C)赵科长烟瘾很大,讲这话的人深信赵科长的烟瘾永远戒不掉。

(D)讲这话的人是在讽刺嘲笑赵科长的戒烟行为。

(E)讲这话的人确信赵科长这次戒烟一定会成功。

6.古希腊柏拉图学园的门口竖着一块牌子“不懂几何者禁入”。这天,来了一群人,他们都是懂几何的人。

那么,他们

(A)可能会被允许进入。

(B)一定不会被允许进入。

(C)一定会被允许进入。

(D)不可能被允许进入。

(E)不可能不被允许进入。

7.所有通过英语六级考试的学生都参加了学校的英语俱乐部,王进参加了英语俱乐部,所以他一定通过了英语六级考试。

以下哪项*地指出了上述论证的逻辑错误?

(A)部分通过英语六级考试的学生没有参加英语俱乐部。

(B)王进能够参加英语俱乐部是因为它符合加入俱乐部的基本条件。

(C)王进曾经获得过年级英语演讲比赛*名。

(D)凡愿意每学期缴纳50元会费,并且愿意积极参加俱乐部活动的学生都可以成为俱乐部的成员。

(E)有些参加俱乐部的学生还没有通过英语六级考试。

8.认真学习逻辑知识,加强逻辑训练,可以有效的提高人们的逻辑思维水平和增强逻辑思维能力。小林平时注重逻辑知识的学习和逻辑思维的训练,可想而知,他的思维是有条理和逻辑性的。上面的论述犯了以下哪项错误?

(A)转移论题。

(B)自相矛盾。

(C)以偏概全。

(D)论据和论题不相干。

(E)推不出。

9.如果电动剃刀中的电池用完了,剃刀就不能工作。我的剃刀不能工作,因此,电池一定是用完了。

以下哪句与以上论证相似?

(A)如果马拉多纳上场,阿根廷队就一定会赢。阿根廷队输了,所以马拉多纳一定没上场。

(B)一个证据没有被破坏除非它不能被接受。这个证据不能被接受,因此,它被破坏了。

(C)如果某甲犯罪了,他的指印可以在现场找到。某甲没有犯罪,所以,某甲的指印没有在现场找到。

(D)老葛是我的叔叔,小菲是老葛的侄女。因此,小菲是我的姐姐。

(E)阿森将戴太阳镜,如果海岸可被清楚地看见。海岸可被清楚地看见,因此,阿森将戴太阳镜。

10.一家钟表店被盗,经查可以肯定是甲、乙、丙、丁中的某一个人所为。审讯中,甲说:“我不是罪犯。”乙说:“丁是罪犯。”

丙说:“乙是罪犯。”丁说:“我不是罪犯。”经调查证实四人中只有一个说的是真话。

根据已知条件,下列哪个判断为真。

(A)甲说的是假话,因此,甲是罪犯。

(B)乙说的是真话,丁是罪犯。

(C)丙说的是真话,乙是罪犯。

(D)丁说的是假话,丁的确是罪犯。

(E)四人中说的全是假话,丙才是罪犯。

11.先天的遗传因素和后天的环境影响对人的发展所起的作用到底哪个重要?双胞胎的研究对于回答这一问题有重要的作用。惟环境影响决定论者预言,如果把一对双胞胎儿完全分开抚养,同时把一对不相关的婴儿放在一起抚养,那么,待他们长大成人后,在性格等内在特征上,前两者之间决不会比后两者之间有更多的类似。实际的统计数据并不支持这种极端的观点,但也不支持另一种极端观点,即惟遗传因素决定论。

从以上论述最能推出以下哪个结论?

(A)为了确定上述两种极端观点哪一个正确,还需要进一步的研究工作。

(B)虽然不能说环境影响对于人的发展起*决定作用,但实际上起重要作用。

(C)环境影响和遗传因素对人的发展都起着重要的作用。

(D)试图通过改变一个人的环境来改变一个人是徒劳无益的。

(E)双胞胎研究是不能令人满意的,因为它得出了自相矛盾的结论。

12.一种对许多传染病非常有效的药物,目前只能从一种叫ibora的树的皮中提取,而这种树在自然界很稀少,5

000棵树的皮才能提取1公斤药物。因此,不断生产这种药物将不可避免地导致该 种植 物的灭绝。

以下哪项如果为真,则最能削弱上述论断?

(A)把从ibora树皮上提取的药物通过一个权威机构发放给医生。

(B)从ibora树皮提取药物生产成本很高。

(C)ibora的叶子在多种医学之品种都使用。

(D)ibora可以通过插枝繁衍和在人工培育下生长。

(E)ibora主要生长在人迹罕至的地区。

13.“作为本公司的法人代表,我郑重声明:王也飞签署的任何合同都无效。王也飞不是法人代表。如他是法人代表,那我就不是,因为一个公司只能有一个法人代表。”

以下哪句话最能代表讲话人所表明的立场观点?

(A)公司只有一个法人代表。

(B)王也飞不是法人代表。

(C)王也飞没有资格签署合同。

(D)王也飞不代表本公司。

(E)我不承认王也飞签署的合同。

14.有甲、乙、丙三个学生,一个出生在北京,一个出生在上海,一个出生在武汉。他们中一个是学国际金融专业的,一个是学工商管理专业的,一个是学外语专业的。其中:

①甲不是学国际金融的,乙不是学外语的。

②学国际金融的不出生在上海。

③学外语的出生在北京。

④乙不出生在武汉。

请根据已知的条件,判断甲的专业:

(A)国际金融。

(B)工商管理。

(C)外语。

(D)三种专业都可能。

(E)三种专业都不可能。

15.如果佣人出现,他将被发现;如果他被发现,他就会受到询问;他如果受到询问,他将回答问题,他的声音可以被听到。如果未看到佣人也未听到他的声音,他一定在工作;如果他在工作,他一定会出现,但没有人听到佣人的声音。

结合上文,以下哪一项能够成立?

(A)佣人被问。

(B)佣人不被问。

(C)未看见佣人。

(D)看到佣人。

(E)以上全不是。

16.只有小陈参加,小王和小张才会一起吃饭;而小陈只到她家附近的酒店吃饭,那里距市中心几里路远;只有小王去,小宋才会去酒店吃饭。

如果上面的资料是对的,下面哪一条也一定对?

(A)小宋不与小陈在酒店一起吃饭。

(B)小张不与小宋、小陈一起在酒店吃饭。

(C)小王、小宋和小张不在酒店一起吃饭。

(D)小宋不在市中心的酒店吃饭。

(E)小王与小张不会一起在市中心吃饭。

17.有人认为当前的* 教育 在传授基本技能上是失败的。他们对若干大公司人事*负责人进行了一次调查,发现很大一部分新上岗的工作人员中都没有很好掌握基本的写作、数量和逻辑技能。

如果上述论点为真,那么以下哪项也为真?

(A)现在的*里没有基本技能方面的课程了。

(B)新上岗人员中极少有*生。

(C)写作、数量、逻辑方面的基本技能对胜任工作很重要。

(D)大公司的新上岗人员基本上代表了当前的* 毕业 生的水平。

(E)过去的*生比现在的*生接受了更多的基本技能教育。

18.在世界范围内禁止生产各种破坏臭氧层的化学物质可能仅仅是一种幻想。大量这样的化学物质已经生产出来,并且以成千上万台冰箱的冷却剂的形式而存在。当这些化学物质到达大气层中的臭氧层时,起作用不可能停止。因此,没有任何方式可以阻止这类化学物质进一步破坏臭氧层。

下列哪项如果为真,则能最严重的削弱以上论证。

(A)不可能精确地测量冰箱里冷却剂这种破坏臭氧层的化学物质的量是多少。

(B)在现代社会中,为了避免不卫生的和潜在的威胁生命的情况发生,食物的冷藏是必要的。

(C)不会破坏臭氧层的替代品还未开发出来,并且替代品可能会的冰箱目前使用的冷却剂昂贵。

(D)即是人们放弃使用冷藏设备,已经存在的冰箱里的冷却剂也是对大气层的一个威胁。

(E)当冰箱的使用寿命结束时,冰箱里的冷却剂可完全回收并且重新利用。

19.龙口开发区消防站向市*申请购置一辆新的云梯消防车,这种云梯消防车是扑灭高层建筑火灾的重要设施。市*否决了这项申请,理由是:龙口开发区现只有五幢高层建筑,消防站现有的云梯消防车足够了。

以下哪项是市*的决定所必须假设的?

(A)龙口开发区至少近期内不会有新的高层建筑封顶投入使用。

(B)市*的财政面临困难无力购置云梯消防车。

(C)消防站的云梯消防车中,至少有一辆近期内不会退役。

(D)龙口开发区的高层建筑内的防火设施都符合标准。

(E)这种云梯消防车对于扑灭高层建筑的火灾并不是不可缺少的。

20.世界卫生组织1995年调查 报告 显示,70%的肺癌患者都有吸烟史。这说明,吸烟将极大增加患肺癌的危险。

以下哪项,如果是真的,将严重削弱上述结论?

(A)有吸烟史的人在1995年超过世界总人口的65%。

(B)1995年世界吸烟的人数比1994年增加了70。

(C)被动吸烟被发现同样有致癌的危险。

(D)没有吸烟史的人数在1995年超过世界总人口的40%。

(E)1995年未成年吸烟者的人数有惊人的增长。

21.有一逻辑推理单选题的四个选择答案分别是:

(1)作案者是甲。

(2)作案者是乙。

(3)作案者是丙。

(4)作案者是甲或乙。

设该题是成立的,则该题的正确答案应是:

(A)(1)

(B)(2)

(C)(3)

(D)(4)

(E)无法确定

22.贾女士:本报对减肥成功者所作的一项调查显示,70%的受调查者称服用东参减肥丸,30%的称服用灵芝瘦身丹。没有被调查者服用其他减肥药。

陈先生:这说明在被调查者中,服用东参减肥丸的人数,比服用灵芝瘦身丹的两倍还多。

贾女士:另外,25%的被调查者称他们从不通过药物减肥。

以下哪项如果为真,最有利于解释贾女士的断定中看来存在的矛盾?

(A)30%的服用灵芝瘦身丹的被调查者,包括在70%的服用东参减肥丸的被调查者中。

(B)一些被调查者服用上述两种减肥药。

(C)被调查者的人数超过100人。

(D)被调查者在整个减肥成功者中,只占很少的比例。

(E)减肥成功者在整个减肥者中只占很少的比例。

23.甲、乙、丙三人居一学生宿舍。甲报案遗失2

000元。保安人员经过周密调查,得出结论是丙作的案。班主任说:“这是最不可能的。”保安人员说:“当所有其他的可能性都被排除了,剩下的可能性不管看来是多么不可能,都一定是事实。”

以下哪项如果是真的,将最为有力地动摇保安人员的结论?

(A)保安人员事实上不可能比班主任更了解学生。

(B)对非法行为惩处的根据,不能是逻辑推理,而只能是证据。

(C)保安人员无法穷尽地把握所有的可能性。

(D)丙是班上公认的品学兼优的学生。

(E)乙有作案的前科。

24.老陈:我在下 围棋 的时候,全神贯注到这种程度,以至我可以说,这时如果有人呼我的话,肯定是白费劲,因为我什么也不会听到。

老焦:如果你什么也听不到的话,怎么会知道有人呼你呢?

以下哪项是对老焦的反应的最恰当的评价?

(A)老焦的话正确地指出了老陈的话中存在的逻辑矛盾。

(B)老焦的话假设:在老陈下围棋的时候,实际上并没有人呼他。

(C)老焦的话中包含着逻辑矛盾。

(D)老焦的话假设:老陈不可能知道有人呼他,除非他听到了呼叫。

(E)老焦的话假设,如果有人呼老陈,他肯定能够听到

25.在美国,本国制造的汽车的平均耗油量是每英里一加仑,而进口汽车的平均耗油量是每英里一加仑。显然,美国车的买主在汽油上的花费要远高于进口汽车的买主。因此,美国的汽车工业在和外国汽车制造商的竞争中将失去很大一部分国内市场。

上述论证基于以下哪项假设?

(A)美国制造的汽车和进口汽车的价格性能比大致相同。

(B)汽车在使用过程中的花费是买主在购买汽车时的主要考虑之一。

(C)美国汽油的价格呈上涨趋势。

(D)美国汽车的*时速要高于进口汽车。

(E)目前在美国国内,国产汽车的销售优于进口汽车。

答案:










可以提高逻辑推理思维能力训练方法
一、 养成从多角度认识事物的习惯。 逻辑推理是在把握了事物与事物之间的内在的必然联系的基础上展开的,所以,养成从多角度认识事物的习惯,全面地认识事物的内部与外部之间、某事物同他事物之间的多种多样的联系,对逻辑思维能力的提高有着十分重要的意义。首先是学会“同中求异”的思考习惯:将相同事物进行比较,找出其中在某个方面的不同之处,将相同的事物区别开来。同时还必须学会“异中求同”的思考习惯:对不同的事物进行比较,找出其中在某个方面的相同之处,将不同的事物归纳起来。

二、 发挥想象在逻辑推理中的作用。 发挥想象对逻辑推理能力的提高有很大的促进作用。发挥想象,首先必须丰富自己的想象素材,扩大自己的知识范围。知识基础越坚实,知识面越广,就越能发挥自己的 想象力 。其次要经常对知识进行形象加工,形成正确的表象。知识只是构成想象的基础,并不意味着知识越多,想象力越丰富。关键是是否有对知识进行形象加工,形成正确表象的习惯。再者,应该丰富自己的语言。想象依赖于语言,依赖于对形成新的表象的描述。因此,语言能力的好坏直接影响想象力的发展。有意识地积累词汇,多阅读文学作品,多炼多写,学会用丰富的语言来描述人物形象和发生的事件,才能拓展自己的想象力。

三、 丰富有关思维的理论知识。 其实,推理有着概括程度、逻辑性以及自觉性程度上的差异,同时又有演绎推理、归纳推理等形式上的区别。而且推理能力的发展遵循一定的规律。中学生应该多了解一些思维发展的理论知识,有意识地用理论指导自己的逻辑推理能力的发展。一般来说,在校中学生掌握和运用各类推理能力存在着不平衡性。如归纳推理的成绩,初一学生能正确使用率已超过60%;演绎推理的成绩要到初三年级才开始接近60%的正确率。根据这样的规律,中学生要学会自觉地用理论作指导,促进自己的各种逻辑能力平衡地发展。

四、 保持良好的情绪状态 心理学研究揭示,不良的心境会影响逻辑推理的速度和准确程度。失控的狂欢、暴怒与痛哭,持续的忧郁、烦恼与恐惧,都会对推理产生不良影响。所以,中学生平时应该学会用意识去调节和控制自己的情绪和心境,使自己保持平静、轻松的情绪和心境,提高自己逻辑推理的水平和质量。怎样锻炼初中生数学思维?

以下是一些锻炼初中生数学思维的方法:

做数学题:数学是一门需要不断练习的学科,通过做数学题可以提高学生的数学能力和思维能力,锻炼解决问题的能力。

培养逻辑思维:数学是一门严谨的学科,需要具备严密的逻辑思维能力。可以通过推理、分析、归纳等方法来培养逻辑思维。

提高数学语言能力:数学是一门特殊的语言,学生需要掌握数学中常用的词汇、符号和表达方式,才能更好地理解和解决问题。

注重数学背景知识的积累:数学是一门需要建立在丰富的背景知识基础上的学科,学生需要了解相关的数学知识和概念,才能更好地掌握数学思维。

组织数学活动:可以组织一些数学游戏、数学竞赛等活动,让学生在轻松愉快的氛围中学习和锻炼数学思维。例如,数独、数学趣味问答、团队竞赛等。

引导学生自主学习:数学是一门需要不断思考和探究的学科,老师可以引导学生积极主动地思考问题,寻找解决问题的方法和思路,从而提高数学思维能力。

如何提高孩子的逻辑思维能力?

1、教会孩子敢于质疑:

逻辑思维能力的锻炼可以通过对各种事物不断的进行质疑的过程来提高自己对事物不同侧面的了解与内在关系,通过质疑的方式来提出更多不同角度的思考与辨别。大量开发大脑对事物之间的关联性的链接,使之更有效的开发逻辑思维。

2、教会孩子参与辩论:

思想在辩论中产生,包括自己和自己辩论。例如关于是主权高于人权还是相反,我认为是保护人权的主权大于人权,不能包括导致国王享用婴儿宴的主权,既必须界定主权,前者有条件成立。导致该认识的原因是有关于该问题的辩论,否则不会去想。

保护人权的主权,这里就有逻辑思维说明了必须保护人权,所以不能偷换概念去说主权大于人权,其实这逻辑说明的就是人权比主权高。

扩展资料:

注重逻辑推理思维方式的培养:

推理的种类是根据一定的标准进行划分的。根据推理前提数量的不同,可分为直接推理和间接推理;根据推理的方向,即思维进程中是从一般到特殊,或从特殊到一般,或从特殊到特殊的区别,传统逻辑将推理分为演绎推理、归纳推理和类比推理三大类。

就初中数学而言,三段论推理是一种重要的演绎推理,它是性质判断三段论推理的简称,由两个包含着一个共同项的性质判断推出一个性质判断的演绎推理。三段论中的三个性质判断的名称分别为大前提、小前提和结论。

三段论推理作为一种基础性的推理,最能体现逻辑推理的思维方式的特点,在初中几何应用中最基本最广泛的推理,学生较容易理解和掌握。因此应作为初中生逻辑推理能力培养的重点和切入点。

参考资料:

百度百科--逻辑思维能力

初中几何怎么开窍?

一、打好基础

公式定理在上课的时候应认真听,在实践运用到几何题中,举一反三,基础扎实了,几何体中运用得也就轻松了。

二、巧用辅助线

不同的图形有不同的辅助线做法,例如三角形是三线合一,平行四边形一般做对角线,练多了就开窍了。

三、多做题

做题的过程中必须自己想出来为止,做完后才能对照答案,查看出自己的不足,熟能生巧。

四、善于总结

总结做题的思路和考点,做一道题掌握一类题,放在好题本里,一般是最典型的题,有助于复习和开窍。

五、错题整理

准备错题本,进行整理。为了不浪费时间,可以把原题直接打印出来,再重复复习和做,找出错因也很重要。

六、提升几何思维

平时要锻炼几何思维,可以多训练,玩玩几何方面的游戏,提升空间抽象思维能力,做题就会得心应手。

几何著名定理

1、勾股定理(毕达哥拉斯定理)

2、射影定理(欧几里德定理)

3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分。

4、四边形两边中心的连线与两条对角线中心的连线交于一点。

5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

6、三角形各边的垂直平分线交于一点。

7、三角形的三条高线交于一点。

8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL

9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。

10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,

11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上

12、库立奇*大上定理:(圆内接四边形的九点圆)

怎样培养好的数学几何思维

首先,要搞清楚数学几何思维到底学什么

图形与几何是义务教育阶段学生数学学习的重要领域。通过小学阶段图形和几何领域的学习后,学生对立体图形的平面图形有了初步的认识,掌握了简单图形的周长、面积、体积的计算方法,初步认识了图形的平移、旋转和轴对称,能判断物体的方位,用数对描述平面上点的位置,形成初步的空间观念和几何直观。

初中阶段图形与几何领域包括图形的性质、图形的变化、图形与坐标等内容,要求从点、线、面、角、三角形、多边形和圆等几何图形,从演绎证明、运动变化、量化分析三个方面研究这些图形的基本性质和相互关系。

其次,引导孩子从观察生活中的空间物体和几何图形开始

生活中的物品几乎都是孩子可以观察到的几何图形,在这个过程中,家长可以告知孩子这些物品的“标准”数学名称,比如:皮球、乒乓球都是球体,桌面是圆形或者长方形...让孩子逐步把眼前的物体和数学化的名词、术语对应起来。不过要注意的是,家长不要硬性要求孩子记住这些名词、术语,只需看似实则有意地引导、渗透即可。孩子在这样的交流中,他们会渐渐地把这些“术语”纳入自己的话语体系中。

第三,引导孩子在观察中比较空间物体和几何图形的异同

日常生活中,家长可以鼓励孩子运用各种感官去认识周围的空间物体。比如:让孩子说说摸着篮球时的感觉是怎样的?触摸桌面的边和角是什么感觉?......把各种具体的物品放在一起,按照物体的形状怎么分类呢?为什么这么分?这些物品的形状哪里一样,哪里不同?长方体的魔方有什么相同的地方呢?等等。以引导为主,家长可以讲述一些关键的特征,让孩子在感官的作用下,去发现、去体悟,而不是让孩子强行记忆。

比较空间图形的不同,还可以通过分类的方法。分类是让孩子按标准辨认,这个标准就是物体和图形的显著特征。可以先和孩子一起制定分类的标准,分类的标准可以多样,标准不同,分类的结果就不一样。

第四,创造环境,让孩子在游戏的过程中增强对空间和几何图形感知

怎样提高中学生的逻辑思维能力?浅谈数学教学中学生逻辑思维能力的培养文昌市龙楼镇中原小学 钟定雄 望山搜的希望能帮助你O(∩_∩)O 思维是人脑以理性形式对客观事物的反映,它是人的一种认识活动。学生具有良好的逻辑思维能力,是学生在学习上获得成功的有力保证。因此,在数学教学中如何培养学生的逻辑思维能力显得特别重要。现结合本人的教学实际,谈谈培养学生逻辑思维能力的几点做法:一、结合内容,培养逻辑思维学生很多知识的掌握都是来源于教学内容,因此结合小学数学教学内容培养学生的逻辑思维能力是较为关键的。我们教师结合小学数学内容培养学生的逻辑思维能力,必须要有意识、有目的。教师在进行小学数学教学时,除了应该考虑数学知识的教学目标外,还应该充分考虑培养学生的逻辑思维能力的教学目标和方法。例如,在教学“多边形面积计算”这个单元时,我除了要求学生掌握这个单元教参中所规定的知识教学目的和要求外,还定出了以下几条在初步逻辑思维能力方面的教学目标和方法。1、培养学生的分析比较能力。通过长方形、正方形、平形四边形、三角形、梯形、组合图形的面积的教学,引导学生分组加以比较这些图形求法的异同点,从而有效地培养学生的分析、比较能力。2、培养学生概括推理能力。例如,教学三角形面积计算时,在学生按照数方格的方法算出面积的基础上,然后提问,有没有更加简单的方法?从而引导学生进行思考,在此基础上,抽象概括出三角形面积的计算公式。从而很好地培养学生抽象概括能力。总之,数学教材处处体现逻辑性,教师千万不能基于教材的表面,只讲数学知识,只有在加强基础知识的同时,重视培养学生初步的逻辑思维能力,自觉地、有目的地挖掘教材本身的逻辑因素,才能不断提高学生的逻辑思维能力。二、重视过程,培养逻辑思维重视思维过程从内容方面讲,要求教师做到三个注重:一是注重算理讲解。如讲小数加减法,教师不能只要求学生掌握的计算小数加减法的法则,而且要讲清算理,让学生知道计算小数加减法时,为什么要先把各数的小数点对齐?二是注重推导过程。如讲圆柱的体积时,教师不仅使学生掌握圆柱的体积的计算公式,而且要讲清怎样切拼推导公式的过程,事实上讲清推导过程,既有利于学生记忆公式,又有利于培养学生逻辑推理能力。三是注重数量关系分析。解应用题的关键是正确分析题里的数量关系,从而找出解题思路,所以应用题教学要注重数量关系分析,客观上,分析数量关系的过程是初步的逻辑思维能力培养、训练和运用的过程。重视思维过程从训练方面讲,要教师让学生除了练法则、公式的应用外,还要让学生练思维的方法和过程。这是培养学生思维能力的一个重要途径。如教学求一个数比另一个数多几的应用题,我就结合实例:哥哥有9本课外书,弟弟有5本课外书。哥哥比弟弟多几本课外书?训练学生如下的思维过程和方法:先想:谁与谁比,谁多谁少(哥哥与弟弟比,哥哥多弟弟少);再想:多的是由哪两部分组成?(一部分是跟弟弟同样多的5本,另一部分是比弟弟多的)*说要求问题怎么办?(要求哥哥比弟弟多几本课外书?只要从哥哥的课外书本数里去掉同样多的5本课外书,剩下的就是哥哥比弟弟多的本数)在此基础上,教师和学生一起归纳出:先想哪个数比较多,再想比较多的数是由哪两部分组成的,然后从这里面去掉和另一个数同样多的部分,就能算出比另个数多的。这样训练不但学生能够真正掌握这类题的解题方法和思路,而且初步的逻辑思维能力能够得到良好的发展。三、鼓励质疑,培养逻辑思维在小学数学教学中教师要鼓励学生质疑问难。学生肯质疑问难,这是学生勤于思考问题的一个重要体现,勤于思考问题的习惯能够很好地促进学生初步的逻辑思维的发展。教师只有鼓励才能使学生敢于质疑问难。须知学生不敢质疑问难将严重影响班级学习气氛和学生智力发展。怎样才能使学生敢于质疑问难呢?积老师们的经验,首先教师不能扼杀学生中出现的质疑问难的好苗头。学生敢于提问或发表意见是一个极好的苗头,即使是错误的意见或者问倒老师的问题,教师都应予以重视和欢迎,然后加以适当的引导,千万不要在不知不觉中扼杀学生中出现的质疑问难的好苗头。其次,教师要抓住机会鼓励学生大胆质疑问难。我在教学和倍应用题“学校有足球和排球共30个,足球的个数是排球的4倍,足球和排球各有多少个?”(列方程解答)。大部分学生都是把排球的个数设为x进行解答,我进行讲解时,也是把排球的个数设为x。临下课前有一个学生问:“老师,这道题把足球的个数设为x,行吗?”学生的这种质疑,我表示极度的赞赏,对着全班同学说:“老师先要感谢这位小朋友提了一个非常好的问题,大家要向他学习,上课肯动脑,敢提问,大家说,这道题把足球的个数设为x,行吗?大家课后要好好研究一下,我们下一堂课再进行讲解。”总之,只要我们老师多多鼓励学生质疑问难,就一定能培养学生思维敏捷性、灵活性。四、理性思考,培养逻辑思维数学具有很强的严密性和条理性,因此培养学生初步的逻辑思维能力,要注意逐步培养学生能够有根据有条理地进行思考,比较完整地叙述思考过程、说明理由。扎实的基础知识是学生有根据有条理思考的前提。试想,一个概念不清、法则不知、公式不懂的学生是难以进行有根据有条理地思考问题的。即使是解答一道简单的式子题,如果不掌握有关数的运算法则,不能有根据有条理地进行思考,也是难以求出正确结果的。所以,培养学生有根据有条理地思考应以扎实的基础知识作前提,要教好、教活基础知识,才能促进学生思维的发展。教好基础知识,主要指基础知识要教得正确、扎实,让学生切实掌握。注意不断提高思维的逻辑性是培养学生有根据有条理思考的关键。逻辑思维是一种有步骤有根据有条理的思维。要培养学生有根据有条理地思考,必须不断提高学生思维的逻辑性。例如,用比例方法解答:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?在学生充分思考的基础上可引导:(1)这道题涉及哪三种量?哪种量是一定的?(2)行驶的路程和时间成什么比例关系?(3)怎么列出比例等式进行解答?这个过程一方面表明,学生有条理地思考必须做到分析清楚、判断恰当、推理合乎逻辑,即要有初步的逻辑思维能力,另一方面也表明只有不断提高学生思维的逻辑性才有助于学生有根据有条理要思考。学生有根据有条理地思考要靠教师长期地科学地训练和培养。培养和训练首先要注意适应学生的年龄特点把操作、思维和语言表达结合起来。其次,要注意分层要求、逐步培养。低年级可多采用边让学生操作,边说思路或教师先说出关键性指导词,然后由学生接着说的方法进行。中高年级教师讲完后可逐步让学生自己有根据有条理比较完整地叙述思考过程,并说明理由。例如,教分数连乘、除应用题时,每一步可让学生说说单位“1”是谁,单位“1”是已知还是未知?数量关系是怎样?当然,培养学生有根据有条理地思考过程是一个逐步提高的过程,不能一下要求学生说得有条有理,也不能要求所有的学生都能说得有条有理。但只要坚持训练,逐步地会有较多的学生能够进行有根据的思考和有条理地说明问题。总之,培养学生的逻辑思维能力的方法和形式是多样的,只要我们教师能根据教材特点,结合学生实际,善于思考学生逻辑思维发展的规律,就一定能在教学中培养出逻辑思维能力出色的好学生。